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We present a dual geometrical worm algorithm for two-dimensional Ising models. The existence of such
dual algorithms was first pointed out by Prokof’ev and Svistunov[N. Prokof’ev and B. Svistunov, Phys. Rev.
Lett. 87, 160601(2001)]. The algorithm is defined on the dual lattice and is formulated in terms of bond
variables and can therefore be generalized to other two-dimensional models that can be formulated in terms of
bond variables. We also discuss two related algorithms formulated on the direct lattice, applicable in any
dimension. These latter algorithms turn out to be less efficient but of considerable intrinsic interest. We show
how such algorithms quite generally can be “directed” by minimizing the probability for the worms to erase
themselves. Explicit proofs of detailed balance are given for all the algorithms. In terms of computational
efficiency the dual geometrical worm algorithm is comparable to well known cluster algorithms such as the
Swendsen-Wang and Wolff algorithms, however, it is quite different in structure and allows for a very simple
and efficient implementation. The dual algorithm also allows for a very elegant way of calculating the domain
wall free energy.
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I. INTRODUCTION

Over recent decades many powerful Monte Carlo(MC)
algorithms have been developed, greatly enhancing the scope
and applicability of Monte Carlo techniques. In fact, it is
quite likely that these algorithmic advances have, and will
continue to have, a far greater impact on the predictive
power of Monte Carlo simulations than advances in raw
computational capacity, a point that is often overlooked. The
continued development of such advanced algorithms is there-
fore very important. Here we shall mainly be concerned with
MC algorithms suitable for the study of lattice models de-
scribed by classical statistical mechanics. Some of the most
notable developments in this field have been the develop-
ment of cluster algorithms by Swendsen and Wang[1] and
by Wolff [2]. More recent developments include invaded
cluster algorithms[3] that self-adjust to the critical tempera-
ture, flat histogram methods[4], focusing on the density of
states and techniques performing Monte Carlo sampling of
the high temperature series expansion of the partition func-
tion [5] using worm algorithms[6]. Two of us recently pro-
posed a very efficient geometrical worm algorithm[7,8] for
the bosonic Hubbard model. In this algorithm variables are
not updated at random but instead a “worm” is propagated
through the lattice, at each step choosing a new site to visit
with a probability proportional to therelative (among the
different sites considered) probability of changing the corre-

sponding variable. The high efficiency of the algorithm
stems from the fact that the worm isalwaysmoved and it is
only through the actual movement that the local
environment—the local “geometry”—comes into play. The
ideas underlying this algorithm are quite generally applicable
and the present paper is concerned with their generalization
to classical statistical mechanics models.

As the canonical testing ground for algorithms we con-
sider the standard ferromagnetic Ising model in two dimen-
sions defined by

H = − Jo
ki,jl

sisj, si = ± 1. s1d

Hereki , jl denote the summation over nearest neighbor spins.
It is well known that the critical temperature for this model
in two dimensions is kBTc=2J/ logs1+Î2d=J2.26918. . ..
When investigating magnetic materials modeled by classical
statistical mechanics such as Eq.(1) using Monte Carlo
methods one has to take into account the effects of the non-
zero autocorrelation timet (defined later) that is always
present in Monte Carlo simulations. The autocorrelation time
describes the correlation between observations of an observ-
ableOst0d andOst0+ td, t Monte Carlo sweeps(MCS) apart.
The autocorrelation time,t, depends on the simulation
temperature and the system size and grows dramatically
close to the critical temperature,Tc, a phenomenon referred
to as critical slowing down. AtTc the autocorrelation
time displays a power-law dependence of the system size,
t,LzMC, defining a Monte Carlo dynamical exponentzMC.
For the well known Metropolis algorithm one estimates
[9,10] zMC,2.1–2.2. If efficient algorithms, with a very
small zMC, cannot be found, this scaling renders the Monte
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Carlo method essentially useless for large lattice sizes since
all data will be correlated. It is therefore crucial to develop
algorithms with a very small or zerozMC. In order to test the
proposed algorithms we shall therefore only consider simu-
lations at the critical point since this is where the critical
slowing down is the most pronounced and wherezMC is de-
fined.

The geometrical worm algorithm[7,8] has proven to be
very efficient for the study of the bosonic Hubbard model
when formulated in terms of currents on the links of the
space-time lattice. The estimatedzMC is very close to zero
[8]. It is therefore natural to generalize this algorithm to clas-
sical models defined in terms of bond variables. This is done
in Sec. III, where a very efficient algorithm formulated di-
rectly on thedual lattice is developed. A related dual algo-
rithm was initially described by Prokof’ev and Svistunov[5].
Our algorithm can be generalized to Potts, clock, and other
discrete lattice models of which the Ising model is the sim-
plest example. The dual algorithm also allows for a very
simple and elegant way of calculating the domain wall free
energy directly. In Sec. III we outline how this is done. Re-
gretably, only in two dimensions is it possible to define such
a dual algorithm. In Sec. III we also present a directed ver-
sion of this algorithm where the probability for the worms to
erase themselves is minimized. However, before presenting
the dual algorithm it is instructive to consider geometrical
worm algorithms defined on thedirect lattice. Such an algo-
rithm is described in Sec. II, in both directed and undirected
versions. This algorithm is applicable in any dimension but is
of less interest due to its poor efficiency. However, from an
algorithmic perspective this algorithm is interesting in its
own right and it leads naturally to the definition of the dual
algorithm. Finally, in Sec. IV we conclude with a number of
observations concerning the properties of the algorithms.

II. GEOMETRICAL WORM ALGORITHMS
ON THE DIRECT LATTICE

The first algorithm we present we shall refer to as the
linear worm algorithm. This algorithm is closely related to
the geometrical worm algorithms[7,8], however, the worms
do not form closed loops, instead they form linear strings(a
worm) of flipped spins. A major advantage of this algorithm
is that we can select the length of the linear worm or even the
entire distribution of worm lengths. This could be advanta-
geous for the study of frustrated or disordered models where
other cluster algorithms fail due to the fact that too “big” or
too “small” clusters are being generated, leading to a signifi-
cant loss of efficiency.

A. Algorithm A (linear worms)

We begin with a number of useful definitions: In order to
define a working algorithm we consider two configurations
of the spins,m andn related by the introduction of a worm.
Let m denote the configurations of the spins without the
worm,w, andn the configuration of the spins with the worm.
Furthermore, lets1. . .sW be the sites(or spins) visited by
the worm(of lengthW) and letEi denote the energy required

to flip the spin at sitesi from its position in the configura-
tion m, with −Ei the energy required to flip spini from its
position in n to that in m. Note thatEi is defined relative
to the spin configurationm. In the following we shall
make extensive use of the activation or local weight for
overturning a spin,Asi

Ei. More precisely,Asi

Ei denotes the
weight for flippingsi from its position inm to that inn and
Asi

−Ei the weight for going in the opposite direction. As we
shall see,Asi

Ei is not uniquely determined. Here, we shall use
Asi

Ei =minf1,exps−DEi /kBTdg although other choices would
be equally suitable. When the worm is moving through the
lattice it will move from the current sitesi to a set of neigh-
boring sitess and it becomes necessary to define the normal-
izationNsi

=osAsi+s
Ei+s. This normalization is used for choosing

the next neighbor to visit among the sets of neighbors.
If one considers the proofs for the geometrical worm al-

gorithms[7,8], it is not difficult to see that a generalization to
classical statistical models defined on the direct lattice will
depend crucially on the fact that the normalizationNsi

does
not depend on the position(up or down) of the spin,si, at the
site itself. For the Ising model, defined in Eq.(1), only near-
est neighbor interactions are taken into account and we can
satisfy this requirement simply by not allowing the worm to
move to any of the four nearest neighbor sites to the current
site si. In principle, one can consider moving the worm to
any other sites in the lattice, an aspect of this algorithm of
considerable intest. For the case of longer range interactions
we would have to restrict the worm to move only to sites that
the current spin doesnot interact with. Note that, since we
allow sites on the same sublattice to be visited then theAsi

Ei

will depend on theorder that we visit the sites since sites
neighboringsi could have been visited previously by the
worm. As an example of a simple choice for the neighbors
we show in Fig. 1 an example where the worm can move to
four neighbors around the current site, excluding the four
nearest neighbors to the site. When defining the set of neigh-
bors s for the worm to move to fromsi one also has to
satisfy the trivial property that ifsi+1 is a neighbor ofsi then
si should also be a neighbor ofsi+1.

FIG. 1. An example of the configuration of the neighbors for
algorithm A,B. The current site,si, is indicated by •, the neighbors
by +. The activation(weight) at the current site will depend on the
spins at the nearest neighbor sites(shaded circles).
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We now propose one possible implementation of the geo-
metrical worm algorithm for the Ising model. A set of suit-
able neighbors tosi is defined as outlined earlier and at the
beginning of the construction of the worm wedraw its
length, W from a normalized distribution. We refer to this
algorithm as linear worms(A). Later we outline the algo-
rithm in pseudocode.

(1) Choose a random starting site,si=1 and with normal-
ized probability a lengthW.

(2) Calculate the probability for flipping the spin on that
site As1

E1 with Asi

Ei =minf1,exps−DEsi
/kBTdg.

(3) Flip the selected spin,si.
(4) For each of thek neighbors in the set of neigh-

bors s, calculate the weight for flipping, Asi+s
Ei+s

=minf1,exps−DEsi+s /kBTdg. Calculate the normalization
Nsi

=osAsi+s
Ei+s and the probabilitiespsi

s =Asi+s
Ei /Nsi

.
(5) According to the probabilitiespsi

s select a new site
si+1 among the neighbors to go to and increasei by one,
i → i +1.

(6) If i ,W go to 3.

(7) CalculateAsW

−EW andN̄sW
after the worm is constructed

and with probability Peswd=1−minf1,As1

E1Ns1
/ sAsW

−EWN̄sW
dg

erase the constructed worm. HereAs1

E1 andNs1
are calculated

beforethe worm is constructed.
(8) Go to 1.
Note that if we decide to construct a worm of lengthW

=1 at a given sites1 then the earlier algorithm corresponds to
attempting a Metropolis spin-flip at that site. See Appendix
A for a proof of the earlier algorithm.

B. Algorithm B (directed linear worms)

It is an obvious advantage to have control over the distri-
bution of the length of the worms. However, if we choose the
length of the worm at the start of the construction of the
worm as in algorithm A then we allow for the worm to back-
track, thereby erasing itself. We can try to eliminate or rather
minimize the probability for the worm to do backtracking by
constructing a directed algorithm. We closely follow the
method outlined in Ref.[8] in order to construct a directed
algorithm. See also Ref.[11] for previous work on directed
algorithms. Letsm andsn be among the neighbors,s, of the
site si. The earlier proof of algorithm A does not depend
directly on the definition of the probabilitiespsi

sm andpsi

sn, but
only on their ratio, since they have to satisfy the following
relation:

psi

sm

psi

sn
=

Asi+sm
/Nsi

Asi+sn
/Nsi

=
Asi+sm

Asi+sn

. s2d

This leaves us considerable freedom since we can define
conditional probabilities,psi

smund, corresponding to the
probability to continue in the directionsm at the sitesi if we
are coming fromsn. At a given site we then only need to
satisfy

psi
smund

psi
snumd

=
Asi+sm

Asi+sn

. s3d

If we havek neighbors this defines ak3k matrix P where
the diagonal elements correspond to the backtracking prob-
abilities, the probabilities for the worm to erase itself. Previ-
ously, we had effectively been usingpsi

smund’s which were
independent of the incoming direction,sn, since we simply
had psi

smund=Asi+sm
/Nsi

, corresponding to a matrixP with
identical columns. However, the earlier condition of balance,
Eq. (3) leaves sufficient room for choosing very small back-
tracking probabilities and in most situations the correspond-
ing diagonal elements ofP can be chosen to be zero. If we
impose the constraint that the sum of the diagonal elements
of P should be minimal the problem of finding an optimal
matrix P can be formulated as a standard linear program-
ming problem to which conventional techniques can be ap-
plied [8].

At a given sitesi we choose four neighbors, as indicated
in Fig. 1 by the open circles+. The activation at a given
neighbor will depend on its four nearest neighbors shown as
the shaded circles in Fig. 1. Technically, eachpsi

smund now
depends on the position of all the 16 surrounding spins. and
hence, there are in principle 216 possible matricesP at each
site. It is therefore not feasible to choose too large a set of
neighbors when directing the algorithm. In the absence of
disorder, the 216 matrices can be tabulated and minimized at
the beginning of the simulation and for the isotropic ferro-
magnetic model at hand it is easy to see that at most 625
differentmatrices occur.

We can now use the earlier matricesP for an algorithm
that performsdirected linear worms of length varying be-
tween 1 andW. We again assume that a sets of k neighbors
has been chosen.

(1) Choose a random starting site,si=1 and with normal-
ized probability a lengthW.

(2) Calculate the probability for flipping the spin on that
site As1

E1 with Asi

Ei =minf1,exps−DEsi
/kBTdg.

(3) Flip the selected spin,si.
(4) If si =s1 then for each of thek neighbors in the

set s, calculate the probability for flipping,Asi+s
Ei+s

=minf1,exps−DEsi+s /kBTdg. Calculate the normalization
Nsi

=osAsi+s
Ei+s and the probabilitiespsi

s =Asi+s
Ei /Nsi

. Else: De-
pending on the configuration of the nearest neighbors of the
k neighbors select the correct(minimized) matrix P and if
the worm arrived from directionsn set psi

s equal to the n’th
column ofP.

(5) According to the probabilitiespsi

s select a new sitesi+1

to go to and increasei by one,i → i +1.
(6) If i ,W go to 3.

(7) CalculateAsW

−EW andN̄sW
after the worm is constructed

and with probability Peswd=1−minf1,As1

E1Ns1
/ sAsW

−EWN̄sW
dg

erase the constructed worm. HereAs1

E1 andNs1
are calculated

beforethe worm is constructed.
(8) Go to 1.
The proof of the earlier algorithm can be found in Appen-

dix B.
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C. Performance: Algorithms A,B

In order to test the performance of algorithms A and B we
consider the autocorrelation functionCOstd of an observable
O. This function is defined in the standard way

COstd =
kOstdOs0dl − kOl2

kO2l− kOl2 . s4d

For a reliable estimate ofCOstd we typically generate 20
million worms. In Fig. 2 we show results for the autocorre-
lation function for the energyCEstd for the linear worm al-
gorithms A,B for a system of sizeL=10. In both cases the
worm lengthW was chosen from a uniform distribution. This
is compared toCEstd for the usual single flip Metropolis
algorithm and the Swendsen-Wang algorithm. For the latter
two algorithms the Monte Carlo time is usually measured in
terms of MCS where an attempt to updateall theL2 spins in
the lattice has been made. However, for algorithms A and B
a worm will on average only attempt to updatekWl of theL2

spins. Hence, if time is measured in terms of generated
worms for the worm algorithms it should be rescaled by a
factor of kWl /L2 for a fair comparison to be made with al-
gorithms where Monte Carlo time is measured in MCS. This
has been done in Fig. 2. From the results in Fig. 2 it is clear
that the efficiency of algorithm A and B is fairly poor and
worse than the much simpler Metropolis algorithm. We have
checked that this remains true for significantly larger lattices
sizes.

The main cause of this poor behavior is the necessity to
include a rejection probabilityPe. If a worm on average at-
tempts to updatekWl spins, we need on average to generate
L2/ kWl worms to complete a MCS. As a rough estimate, let
us consider that the worm is accepted with the average prob-
ability p and that only a fractionx of the kWl attempted spin
flips result in an updated spin(a spin can be visited several
times). It then follows that on averagepxL2 are actually
flipped in a MCS with the linear worm algorithm. If the
average probability for flipping a spin with the Metropolis
algorithm is q and if all the spins selected in a MCS are
different, the corresponding number for the Metropolis algo-
rithm is qL2, presumably of the same order aspxL2 and
likely larger. The effect of the directed linear worm algo-
rithm is to maximizex as much as possible and it therefore
seems unlikely that the linear worm algorithm in its present
form can perform better than the Metropolis algorithm unless
p also is maximized.

It would be very interesting if algorithms A and B could
be modified so thatp;1 sPe;0d. We have so far been un-
able to do so. Such a modified algorithm would be signifi-
cantly more efficient than the Metropolis algorithm(but pre-
sumably less efficient than the Swendsen-Wang algorithm).
It would be much more versatile and could be of significant
interest for frustrated or disordered systems since it would
not require the construction of clusters but only of the much
simpler worms, the length of which can be chosen.

Even though it is quite interesting to be able to choose the
distribution of the worm lengths at the outset, the question
arises which distribution of worm lengths will give the most
optimal algorithm. In the present work we have chosen a
distribution of worm lengths that is uniform between 1 and
2L, but on general grounds we expect a power-law form for
this distribution to be more optimal at the critical point. For
the study of Bose-Hubbard models using geometrical worm
algorithms it was noted[8] that the distribution of the size of
the worms follows a power-law with an exponent of approxi-
mately 1.37 at the critical point. Hence, in the present case it
would appear likely that an optimal power-law distribution
of the worm lengths atTc can be found, defining a “dynami-
cal” exponent. The idea of choosing the distribution of the
worm size to optimize the algorithm resembles previous
work by Barkema and Newman[12,13].

In closing this section, we note that it is quite straightfor-
ward to define an algorithm on the direct lattice where the
worms form closed loops(rings). In this case the length of
the worm is determined by the size of the loop. We have
tested such algorithms but their performance is even worse
than algorithms A and B since the constraint that the initial
spin has to be revisited makes the length of the worms in
some cases diverge, or for other variants of such an algo-
rithm, go to zero.

III. DUAL ALGORITHM

It is clear that one problem with both of the earlier algo-
rithms is the fact that the spin on the initial site is treated
differently than the remaining spins. This is because the geo-
metrical worm algorithms are more suitable for an imple-

FIG. 2. Autocorrelation functions for the energyCEstd as a func-
tion of Monte Carlo time, calculated atTc. Shown are results for
L=10 for the Metropolis, Swendsen-Wang and for the linear worm
(A) and directed linear worm(B) algorithms(with uniform worm
length). Note that in order to compare the four algorithms the time
axis has been scaled so that in all cases one time step corresponds to
an attempted update of all the variables. The autocorrelation func-
tions shown were calculated averaging over 20 million worms
(MCS for the metropolis algorithm).
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mentation directly on the dual model. Hence, we will now
try to describe an algorithm that moves a worm along the
dual lattice by updating bond variables on the direct lattice
See Fig. 3.

We begin with some definitions analogous to the treat-
ment of Kadanoff[14]. On the direct lattice we define, at
each sites j ,kd an integer variablesj ,k= ±1. Here j describes
the index in thex direction andk the index in they direction.
Then we can define the following bond variables:

bxs j ,kd = sj+1,ksj ,k, s5d

bys j ,kd = sj ,k+1sj ,k. s6d

The Ising model hasL2 variables where as we see that we
have 2L2 bond variables. However, it is easy to see that the
bond variables satisfy a divergence free constraint at each
site of the dual lattice

bxs j ,kd + bys j + 1,kd − bxs j ,k + 1d − bys j ,kdsmod 4d = 0

s7d

giving usL2 constraints. However, if we define the model on
a torus the constraint on each dual lattice site is equal to the
sum over the constraints on all the other dual sites. Hence, in
this case we obtain onlyL2−1 independent constraints. In
addition we also have to satisfy the boundary conditions,
sL+1,k;s1,k, sj ,L+1;sj ,1. This implies that for anL3L lattice
with even L:

o
j=1

L

bxs j ,kd − Lsmod 4d = 0 ∀ k, s8d

o
k=1

L

bys j ,kd − Lsmod 4d = 0 ∀ j . s9d

These constraints are not independent of the previously de-
fined constraints Eq.(7). In fact, it is easy to see that if the
boundary constraints Eq.(9) are applied at just one row and
one column then the divergence free constraints Eq.(7) will
enforce the boundary constraints at the remaining rows and
columns. Hence, these constraints only give us 2 more inde-
pendent constraints, in totalL2+1 constraints. The model,
written in terms of the bond variables, therefore hasL2−1
free variables and correspondingly half the number of de-
grees of freedom compared to the formulation in terms of the
spin variables. This is a natural consequence of the fact that
the bond-variable model does not distinguish between a state
and the same state with all the spins reversed.

The partition function for the Ising model on aL3L torus
can now be written in the following manner:

Z = Trbx8 Trby8 p
j=1

L

p
k=1

L

exphKj ,k
x bxs j ,kd + Kj ,k

y bys j ,kdj. s10d

Here Tr8 denotes the trace over bond variables satisfying the
earlier constraints andKj ,k

x =Jj ,k
x /kBT, Kj ,k

y =Jj ,k
y /kBT.

A. Algorithm C (dual worm algorithm)

We now turn to a discussion of the dual algorithm. From
the earlier description in terms of bond variables it is now
quite easy to define a geometrical worm algorithm on the
dual lattice closely following previous work on such algo-
rithms[7,8]. We denote theith site on the dual lattice that the
worm visits asdi. A worm is constructed by going through a
sequence of neighboring sites on the dual lattice by each
time choosing a directions to follow according to an appro-
priately determined probability. When the worm moves from
di to di+1 the corresponding bond-variablebi that the worm
crosses is flipped. The bond variables can take on only 2
values ±1. Hence, the associated energy cost for flippingbi is
given by DE=2Jj ,k

a bas j ,kd, a=x,y. We can now define
weights for each directions, AEs=minf1,exps−DEs /kBTdg
used for determining the correct probability for choosing a
new site. This is not the only choice for the weights. Other
equivalent choices should work equally well. The bond vari-
ables are updated during the construction of the worm and
the worm is finished when the starting site on the dual site is
reached again and the worm forms a closed loop. The dual
worm algorithm can then be summarized using the following
pseudocode.

(1) Choose a random initial sited1 on the dual lattice.
(2) For each of the directionss= ±x, ±y calculate the

weightsAEs associated with flipping the bond variable per-
pendicular to that direction,AEs=minf1,exps−DEs /kBTdg.

(3) Calculate the normalizationNdi
=osAEs and the asso-

ciated probabilitiespdi

s =AEs /Ndi
.

(4) According to the probabilities,pdi

s , choose a direction
s.

(5) Update the bond-variablebi
s for the direction chosen

and move the worm to the new dual lattice sitedi+1.

FIG. 3. A worm moving through the dual lattice. The direct
lattice is indicated by solid lines and the spins on the direct lattice
by solid circles. The dual lattice is indicated by dashed lines and the
sites on the dual lattice by open circles. As the worm moves through
the lattice the bond variables are flipped as indicated by the thick
bonds in the figure.

DUAL GEOMETRIC WORM ALGORITHM FOR TWO-… PHYSICAL REVIEW E 70, 016702(2004)

016702-5



(6) If di Þd1 go to 2.

(7) Calculate the normalizationsN̄d1
andNd1

of the initial
site, s1, with and without the worm present. If the worm is
“legal,” i.e., with evenwinding number in both thex and the
y direction (Ow

x , Ow
y both 0—see definition later), then erase

the worm with probabilityPe=1−mins1,Nd1
/ N̄d1

d. If the
worm is “illegal,” that is if eitherOw

x or Ow
y calculated when

the worm has closed equal 1, then always erase it. Go to 1.
Following the earlier discussion of the boundary con-

straints it is easy to determine if the winding number in thex
or y direction is odd by simply choosing one rowk0 and one
column j0 and calculating the number of frustrated,b=−1,
bond variables

Ox = o
j

1 − bxs j ,k0d
2

smod 2d,

Oy = o
k

1 − bys j0,kd
2

smod 2d, s11d

since a worm with an odd winding number in they direction
will result in Ox being 1 independent ofk0, or equivalently
for thex direction andOy. See Fig. 4.Ox andOy then take on
the values 1 or 0 depending on whether the corresponding
winding numbers are odd or even.

Several points are noteworthy about this algorithm. To a
great extent it is simply the dual version of the Wolff algo-
rithm [2]. Each worm encloses a cluster of spins on the direct

lattice (not necessarily a simply connected cluster). Flipping
the bond variables in the worm effectively flips the spin in
the cluster. This correspondence is particular to two dimen-
sions which is the only dimension where the present dual
worm algorithm can be defined. The intuitive argument for
this is that the bond variables updated by the worm have to
enclose a finite volume of spins on the direct lattice; this is
only possible in two dimensions. In dimensions higher than 2
the one-dimensional worms are not capable of enclosing a
finite volume. Mathematically, it can be seen that the diver-
genceless constraint, Eq.(7), cannot be satisfied under worm
moves. Under most conditions the rejection probability,Pe,
is very small, however, for small lattice sizes the probability
for generating a worm with anoddwinding number in either
the x or y direction can be non-negligible. It is important to
note that since the bond variables are updated during the
construction of the worm the generated configurations are
not valid and the earlier constraints arenot satisfied. How-
ever, once the construction of the worm is finished and the
path of the worm closed, the divergenceless constraint is
satisfied. Rejecting worms with odd winding numbers then
assures that the resulting configurations are valid. Also, when
the worm moves through the lattice it may pass many times
through the same link and cross itself before it reaches the
initial site where the construction terminates. Finally, at each
step i in the construction of the worm it is likely that the
worm at the sitedi will partially “erase” itself by choosing to
go back to the sitedi−1 visited immediately before, thereby
“bouncing” off the sitedi.

Proof of algorithm C (dual worm algorithm)

Now we turn to the proof of detailed balance for the al-
gorithm. As before, letm denote the configuration of the
bond variables without the worm,w, andn the configuration
with the worm. Let us consider the case where the worm,w,
visits the siteshd1. . .dWj on the dual lattice. Hered1 is the
initial site. The worm then goes through the corresponding
bond variableshb1. . .bWj. Note thatdW is the last site visited
before the worm reachesd1. Furthermore, letEi denote the
energy required to flip the bond-variablebi from its position
in the configurationm, with −Ei the energy required to flipbi
from its position inn to that in m. The total probability for
constructing the wormw is then given by

Psw;d1 → dWd = Psd1df1 − PeswdgPslegaluwdp
i=1

W
AEi

Ndi

.

s12d

The indexs denotes the direction needed to go fromdi to
di+1, s±x, ±yd, crossing the bond-variablebi. Psd1d is the
probability for choosing sited1 as the starting point and
Peswd is the probability for erasing a legal worm after con-
struction. Finally,Pslegaluwd is the conditional probability
that the constructed wormw is legal, with even winding
numbers in bothx and y directions. If the wormw is legal
and has been accepted we have to consider the probability
for reversing the move. That is, we consider the probability
for constructing an anti-wormw̄ annihilating the wormw.

FIG. 4. An illegal worm move. The worm winds around the
lattice in the vertical direction and correspondinglyall rows have an
odd number of flipped bond variablesb. The direct lattice is indi-
cated by solid lines and the spins on the direct lattice by solid
circles. The dual lattice is indicated by dashed lines and the sites on
the dual lattice by open circles. As the worm moves through the
lattice the bond variables are flipped as indicated by the thick bonds
in the figure.
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Note that, in this case the sites are visited in the opposite

order, d̄1=d1,d̄2=dW, . . . ,d̄W=d2, in general d̄i =dW−i+2
si Þ1d. In the same manner the bond variables are also vis-

ited in the reverse orderb̄1=bW,b̄2=bW−1, . . . ,b̄W=b1, in

generalb̄i =dW−i+1. Consequently, when describingw̄, we di-

rectly used,b instead ofd̄,b̄. The notation is illustrated in
Fig. 5. We therefore have

Psw̄;d̄1 → d̄Wd = Psd1df1 − Pesw̄dgPslegaluw̄d

3
A−EW

N̄d1

p
i=W

2
A−Ei−1

N̄di

. s13d

Please note that the indexi runs overW, . . . ,2. Let us now
consider the case where both of the wormsw and w̄ have
reached the sitedi differentfrom the starting sited1. See Fig.
5. Since we are updating the link variables during the con-

struction of the worm we immediately see thatNdi
=N̄di

for
i Þ1. Furthermore,AEi and A−Ei only depend on the bond-
variablebi, and we therefore see that

AEi

A−Ei
= exps− DEi/kBTd, i = 1 . . .W. s14d

Hence, sincePsd1d is uniform throughout the dual lattice,
and sincew andw̄ must wind the lattice in precisely the same
manner resulting inPslegaluwd=Pslegalu w̄d, we find

Pswd
Psw̄d

=
1 − Peswd
1 − Pesw̄d

N̄d1

Nd1

exps− DETot/kBTd, s15d

whereDETot is the total energy difference between a configu-
ration with and without the wormw present. With our defi-

nition of Pe we see thatf1−Peswdg / f1−Pesw̄dg=Nd1
/ N̄d1

.

Hence, with this choice ofPe we satisfy detailed balance
since

Pw

Pw̄
= exps− DETot/kBTd. s16d

As was the case for the previous algorithms there are two
ways of introducing a worm that will take us fromm→n,
and equivalently two ways of introducingw̄. (Strictly
speaking, each of the two ways actually represents an in-
finite sum as discussed under the proof of algorithm A.) In
both cases Eq.(16) holds and it follows thatPsm→nd
=Psn→mdexps−DETot/kBTd showing that detailed balance is
satisfied. Ergodicity is simply proven as the worm can per-
form local loops and wind around the lattice in any direction.

Illegal worms. One should be cautious when treating
illegal moves such as the worms with odd winding num-
bers encountered earlier. Suppose that our Monte Carlo
algorithm has generated a number of configurations
C1,C2,C2,C3, . . . ,Ci−1,Ci where some configurations are
repeated since the worm moved has been rejected. From
the configurationCi we now construct a worm that turns
out to be illegal with odd winding numbers. From the earlier
proof we then see that wehaveto repeatCi in the sequence
of configurations sincenot repeating the configuration
would lead to a total acceptance probability different from
f1−PeswdgPslegaluwd. For instance, imagine we kept gener-
ating worms till we found a legal one. This would make the
total acceptance ratio a sum over the number of times we try
which would be incorrect.

B. Algorithm D (dual directed worm algorithm)

Following the discussion of algorithm B it is straightfor-
ward to develop a directed version of algorithm C. As was
the case for algorithm B we define conditional probabilities
pdi

smund, corresponding to the probability for continuing in
the directionsm if the worm has come from directionsn.
Since we in algorithm C, at each site on the dual latticedi,
can go in four directions this leads us to define a 434 matrix
P at each site on the dual lattice. However, compared to
algorithm B, the number of different matrices at a given dual
site is now much smaller since the weightsAEi only depend
on the associated bond variable. In fact there are now only 16
possible matrices at a given site and these can easily be op-
timized and tabulated at the outset of the calculation. Even in
the presence of disorder, a large number of them can be
tabulated. This directed dual worm algorithm is now identi-
cal to algorithm C except for the fact that ifdi is different
from d1, the pdi

s are selected from these optimized matrices
(the same way as it was done for algorithm B). Due to the
simplicity of this modification and the similarity with algo-
rithm B, we do not present pseudocode nor a proof for
this directed algorithm. It is easy to see that rejection prob-
ability remains identical to the one used in algorithm C,

Peswd=1−mins1,Nd1
/ N̄d1

d.

C. Performance algorithm C,D

In order to compare the two algorithms C and D defined
on the dual lattice we have again calculated the autocorrela-

FIG. 5. The notation used for the proof of the dual worm algo-
rithm. The configuration shown corresponds to a worm(solid line)
partly erased by its corresponding antiworm(dashed line).
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tion functionCEstd. Our results are shown in Fig. 6 and tabu-
lated in Table I. As on the direct lattice we use the energy to
calculate the autocorrelation functions. For algorithms C and
D we have constructed 10 million worms for the smaller
lattices and 20 million for the largest latticesL=160d. We

compare to the Metropolis algorithm where each time step
corresponds to an attempted update of theL2 spins. Since
the worm algorithm in this case on average only attempts
to updatekWl out of the 2L2 bond variables we have to
rescale the time axis by a factor ofkWl / s2L2d when we com-
pare algorithms C and D to the Metropolis algorithm. We can
therefore define an autocorrelation timet in units of worms
constructed and a rescaled autocorrelation timet8
=tkWl / s2L2d in units of 2L2 attempted updates. In order to
simplify the analysis of the data we define the autocorrela-
tion time asCEstd;0.05. As can be seen in Fig. 6, the
dual worm algorithms represent a dramatic improvement
over the Metropolis algorithm. We have not plotted results
for the Swendsen-Wang algorithm on the direct lattice since
for L=10 they are indistinguishable from the results obtained
for the dual directed worm algorithm. The scaling oft8 with
L is a relatively small power-lawt8,L0.46. This exponent is
small butlarger than most values quoted for the Swendsen-
Wang and Wolff algorithms. This is perhaps not too surpris-
ing since the worms are allowed to cross themselves thereby
erasing previous updates. The difference in autocorrelation
times between algorithm C and its directed version D ap-
pears to be a constant factor. Therefore, the direction of al-
gorithm C does not change the exponentzMC.

For a 10310 lattice atTc roughly 85% of all constructed
worms are accepted and about 10% of the constructed
worms are illegal when simulations are performed using the
dual geometric worm algorithm. For the directed version of
the algorithm the corresponding numbers are 75% and 20%.
The number of illegal worms drops rapidly withL and for
L=30, 90% of the worms are accepted with 5% illegal
worms for the undirected algorithm compared to 83% and
10% for the directed dual algorithm.

The presented dual algorithms are quite general since they
depend only in a relatively limited way on the underlying
Hamiltonian. Even though they may not be competitive with
the Swendsen-Wang and Wolff algorithms for the Ising
model they may be quite interesting to apply to other two-
dimensional models that can be formulated in terms of bond
variables and where more effective cluster algorithms are
difficult to define.

D. Domain wall free energy

A quantity of particular interest in many studies of order-
ing transitions is the domain wall free energy, the difference
in free energy between configurations of the system with
periodic sPd and antiperiodic(AP) boundary conditions in
one direction,DF=FAP−FP. The domain wall free energy
can be shown to obey simple scaling relations and is a very
efficient tool for distinguishing between different ordered
phases. Unfortunately, it is usually very difficult to calculate
free energies directly in Monte Carlo simulations. A clever
trick to do so is the boundary flip MC method, proposed by
Hasenbusch[15,16], where the coupling constants at the
boundary are considered as dynamical variables, and can be
flipped during the course of the MC simulation. IfPPsTd
and PAPsTd describe the probability to obtain MC configu-
rations with periodic and antiperiodic boundary conditions

FIG. 6. Autocorrelation functions for the energyCEstd as a func-
tion of Monte Carlo time, calculated atTc. Shown are results for
L=10,20 for the Metropolis, dual worm and dual directed worm
algorithms. Note that, in order to compare the three algorithms the
time axis has been scaled so that in all cases one time step corre-
sponds to an attempted update of all the variables. The inset shows
the scaling of the autocorrelation timet8 as a function of the system
size for the dual worm and dual directed worm algorithm. The
autocorrelation time is here rescaled:t8=tkWl / s2L2d. In both cases
we find roughly a power-law formt8.L0.46 shown as the solid
lines in the inset. The autocorrelation functions shown were calcu-
lated averaging over 10–20 million worms(MCS for the metropolis
algorithm).

TABLE I. Average worm size defined as the average number of
bond variables attempted to change during the construction of any
worm, including worms eventually rejected. Also listed is the esti-
mated autocorrelation time,t, in units of worms constructed and the
rescaled autocorrelation timet8=tkWl / s2L2d in units of 2L2 at-
tempted updates. The autocorrelation time is here defined by
CEstd=0.05. Results are listed for the dual and dual directed worm
algorithms.

Dual Dual directed

L kWl t t8 kWl t t8

10 57 64.6 18.4 60 29.3 8.8

20 188 109.4 25.7 198 49.3 12.2

30 382 149.4 31.7 400 66.6 14.8

40 630 187.9 37.0 660 81.9 16.9

80 2119 303.8 50.3 2204 135.9 23.4

160 7132 478.8 66.7 7408 214.3 31.0

HITCHCOCK, SØRENSEN, AND ALET PHYSICAL REVIEW E70, 016702(2004)

016702-8



and ZP, ZAP the associated partition functions, then the do-
main wall free-energy is given by

e−bsFAP−FPd =
ZAP

ZP
=

PAPsTd
PPsTd

. s17d

Effectively, the boundary flip MC method attempts to sample
the ratioZAP/ZP, and this is usually cumbersome. However,
for the dual algorithms it is trivial to obtain this ratio. It
follows from Eq.(9), that if we allow the constructed worms
to have all different kinds of winding around the torus(mak-
ing all worms legal) then we are sampling a partition func-
tion which is a sum of four terms

Z = ZPx,Py
+ ZAPx,Py

+ ZPx,APy
+ ZAPx,APy

. s18d

Here,ZBCx,BCy
is the partition function with BCxsBCyd in the

xsyd direction. This is so, because we can turn an illegal
worm into a legal worm by changing the boundary condition
in the direction(s) where the winding of the worm violates
Eq. (9). During the MC simulation it is easy to see to which
term a given configuration contributes simply by keeping
track of thetotal winding number in both thex andy direc-
tion. See Eq.(11). When this is even, the boundary condition
in the associated direction is periodic, and if it is odd the
boundary condition is antiperiodic. In order to calculate
ZAPx,Py

/ZPx,Py
we therefore simply have to count how many

times thetotal winding number is odd in thex direction and
even in they direction and divide with the number of times it
is even in both directions. Due to its simplicity, we expect
this approach to be an extremely efficient way of calculating
DF. In Table II we show preliminary results forDF /kT cal-
culated with 108 worms for the two-dimensional Ising model
at Tc. For reference we compare to exact results obtained
using pfaffians[17].

IV. DISCUSSION

We have presented two generalizations of the geometrical
worm algorithm applicable to classical statistical mechanics
model. The first algorithm exploits linear worms on the di-
rect lattice, the other closed loops of worms on the dual
lattice. In both cases we have developed directed versions of
the algorithms. While the first algorithm is applicable in any
spatial dimension, it is quite clear that for topological rea-
sons it is only possible to define a worm algorithm of the

proposed kind on the dual lattice in two spatial dimensions.
Due to its poor performance the linear worm algorithm

(A) is mainly of interest from the perspective of fostering the
development of more advanced algorithms. The linear worm
algorithm presents a number of very attractive features such
as the possibility to choose the distribution of the worm
lengths and it seems possible to significantly improve the
performance of the algorithm(and most other geometrical
worm algorithms) by eliminating the rejection probability. So
far, we have been unable to do so, but this would clearly be
very interesting since the algorithms then would be quite
promising for the study of frustrated or even disordered mod-
els where other cluster algorithms fail.

The dual worm algorithm is very efficient and even
though the obtainedzMC is larger than for the Swendsen-
Wang algorithm it is quite competitive since it requires rela-
tively little overhead and is very simple to implement. One
of the most interesting features of this algorithm is the topo-
logical aspect of the worms, resulting in forbidden worm
moves.

The geometrical worm algorithm has in some cases been
very successfully applied to the study of models with disor-
der [7]. We therefore applied both the linear and dual worm
algorithm to the bond disordered Ising model. In both cases
do the algorithms perform worse than the Metropolis algo-
rithm. For the dual worm algorithm this failure is due to the
fact that the average size of worms diverge when glassy
phases are approached. The linear worm algorithm would
seem more promising for study of models with disorder since
the length of the worms can be controlled from the outset. In
fact the performance of the algorithm is in this case quite
comparable to the Metropolis algorithm(which has a diverg-
ing t close to a glassy phase). One might have expected the
linear worm algorithm to perform significantlybetter than
the Metropolis algorithm when disorder is present. We as-
sume that the fact that it is only comparable to the Metropo-
lis algorithm is because large parts of the spins are not effec-
tively flipped since worms are mostly rejected in those parts
of the lattice. If this is true, a modified version of the linear
worm algorithm withPe;0 or with a much more ingenious
choice of the neighbors would be of considerable interest
since it would hold the potential to sample such disordered
models significantly more effectively than the Metropolis al-
gorithm.
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APPENDIX A: PROOF OF ALGORITHM A

The probability for creating the worm,w, starting from
site s1 is given by

TABLE II. The domain wall free-energyDF /kT for several sys-
tem sizes calculated at the critical temperatureTc obtained using
our MC method and exact results from Ref.[17].

L Exact MC

4 0.9658246670 0.9654(5)

16 0.9853282229 0.985(10)

24 0.9859725679 0.985(10)

32 0.9861972559 0.986(10)

48 0.9863574947 0.986(10)

64 0.9864135295 0.984(20)
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Psw;s1 → sWd = PsWdPss1d
As2

E2

Ns1

As3

E3

Ns2

¯

AsW

EW

NsW−1

f1 − Peswdg.

sA1d

Here PsWd denotes the probability for choosing a worm
length ofW. The probability for introducing an antiworm,w̄,
starting at the sites1, erasing the worm by going in the op-
posite direction alongw becomes

Psw̄;sW → s1d = PsWdPssWd
AsW−1

−EW−1

N̄sW

¯

As2

−E2

N̄s3

As1

−E1

N̄s2

f1 − Pesw̄dg.

sA2d

Since neitherNsi
nor N̄si

depend on the position of the spin
on the sitei and since the spins are visited in the precise
opposite order for the antiworm with respect to the worm, we

then see thatNsi
=N̄si

∀i Þ1,W, and we find

Psw;s1 → sWd
Psw̄;sW → s1d

=
1 − Peswd
1 − Pesw̄d

As2

E2 . . .AsW

EW

AsW−1

−EW−1 . . .As1

−E1

N̄sw

Ns1

. sA3d

SinceAsi

Ei /Asi

−Ei =exps−DEi /kBTd we see, using our definition
of Pe, that

Psw;s1 → sWd
Psw̄;sW → s1d

= exps− DE/kBTd. sA4d

Quite generally, there is more than one way to introduce a
worm to go from m to n. In fact there are two ways of
introducing a worm taking the system from configurationm
to n, one where the worm traverses the sites froms1 to sW
and another where the worm traverses the sites fromsW to s1.
Equivalently, there are two ways of introducing the anti-
worm. Hence,Psm→nd is a sum of the two probabilities,
Psm→nd=Psw;s1→sWd+Psw;sW→s1d. However, employ-
ing the result we have just proven we see that

Psm → nd = fPsw̄;sW → s1d + Psw̄;s1 → sWdg

3 exps− DE/kBTd

= Psn → mdexps− DE/kBTd. sA5d

Hence, the proposed algorithm satisfies detailed balance on a
bipartite lattice and we see that detailed balance is satisfied
no matter how many possible ways one can introduce a
worm in order to go fromm→n as long as the number of
possible antiworms matches. Strictly speaking, since the
worm can partly erase itself, thereis in fact an infinite num-
ber of worm-moves that will take us fromm to n, however,
in each case there is a matching antiworm so we can replace
the earlier sum over two probabilities with an infinite sum,
yielding the same conclusion. Ergodicity is proven by noting
that single spin flips are incorporated in the algorithm.

APPENDIX B: PROOF OF ALGORITHM B

The proof is quite similar to the proof of algorithm A and
we use the same notation. The probability for creating a
worm, w, starting from sites1 is then given by

Psw;s1 → sWd = PsWdPss1d
As2

E2

Ns1

ps2
ss3us1d . . . psW−2

3ssW−1usW−3dpsW−1
ssWusW−2df1 − Peswdg.

sB1d

HerePss1d denotes the probability for choosing sites1 as the
starting site for the worm,PsWd the probability for choosing
a worm lengthW. psi

ssi+1usi−1d denotes the conditional prob-
ability, extracted from the minimized matrixP, at the sitesi
for continuing to the sitesi+1 knowing that the worm is com-
ing from the sitesi−1. Starting from the configurationn we
can now calculate the probability for introducing an anti-
worm, w̄, starting at the sitesW, erasing the worm,w. We find

Psw̄;sW → s1d = PsWdPssWd
AsW−1

−EW−1

N̄sW

p̄sW−1
ssW−2usWd . . . p̄s3

3ss2us4dp̄s2
ss1us3df1 − Pesw̄dg. sB2d

At a given site,si, the configurations of the spins during
the construction of the worm and the antiworm only differ by
the position of the spin at the site itself. Since the set of
neighborss exclude any nearest neighbors tosi we see that

Psi
= P̄si

. Hence, by construction

psi
ssi+1usi−1d

p̄si
ssi−1usi+1d

=
Asi+1

Ei+1

Asi−1

−Ei−1
. sB3d

Using the definition ofPe and the fact thatPss1d=PssWd, we
then see that

Psw;s1 → sWd
Psw̄;sW → s1d

=
As1

E1 . . .AsW

EW

As1

−E1 . . .AsW

−EW
. sB4d

SinceAsi

Ei /Asi

−Ei =exps−DEi /kBTd we finally see that

Psw;s1 → sWd
Psw̄;sW → s1d

= exps− DE/kBTd, sB5d

whereDE is the total energy cost in going from configura-
tion m to configurationn. As was the case for algorithm A,
there are two ways of introducing a worm taking the system
from configurationm to n (modulo sites visited an even num-
ber of times), one where the worm traverses the sites froms1
to sW and another where the worm traverses the sites fromsW
to s1. Equivalently, there are two ways of introducing the
antiworm. We again see that detailed balance is satisfied.
Ergodicity is proven by noting that single spin flips are in-
corporated in the algorithm, since forW=1 the algorithm
corresponds to attempting a Metropolis spin flip at the se-
lected site.
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