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We present a dual geometrical worm algorithm for two-dimensional Ising models. The existence of such
dual algorithms was first pointed out by Prokof’ev and SvistupidvProkof’ev and B. Svistunov, Phys. Rev.
Lett. 87, 160601(2001)]. The algorithm is defined on the dual lattice and is formulated in terms of bond
variables and can therefore be generalized to other two-dimensional models that can be formulated in terms of
bond variables. We also discuss two related algorithms formulated on the direct lattice, applicable in any
dimension. These latter algorithms turn out to be less efficient but of considerable intrinsic interest. We show
how such algorithms quite generally can be “directed” by minimizing the probability for the worms to erase
themselves. Explicit proofs of detailed balance are given for all the algorithms. In terms of computational
efficiency the dual geometrical worm algorithm is comparable to well known cluster algorithms such as the
Swendsen-Wang and Wolff algorithms, however, it is quite different in structure and allows for a very simple
and efficient implementation. The dual algorithm also allows for a very elegant way of calculating the domain
wall free energy.
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I. INTRODUCTION sponding variable. The high efficiency of the algorithm
stems from the fact that the worm adwaysmoved and it is
Over recent decades many powerful Monte CAMC)  only  through the actual movement that the local
algorithms have been developed, greatly enhancing the scop@yironment—the local “geometry”—comes into play. The
and applicability of Monte Carlo techniques. In fact, it is jgeas underlying this algorithm are quite generally applicable
quite likely that these algorithmic advances have, and willang the present paper is concerned with their generalization
continue to have, a far greater impact on the predictivgq ¢lassical statistical mechanics models.
power of Monte Carlo simulations than advances in raw ag the canonical testing ground for algorithms we con-

computational capacity, a point that is often overlooked. Theiger the standard ferromagnetic Ising model in two dimen-
continued development of such advanced algorithms is thergjons defined by

fore very important. Here we shall mainly be concerned with
MC algorithms suitable for the study of lattice models de-
scribed by classical statistical mechanics. Some of the most
notable developments in this field have been the develop-
ment of cluster algorithms by Swendsen and Wétigand  Here(i, ) denote the summation over nearest neighbor spins.
by Wolff [2]. More recent developments include invadedit js well known that the critical temperature for this model
cluster algprithms{3] that self-adjust to the critical tempera- iy two dimensions is kBTC=2J/|Og(1+\;“§):‘]2_26918‘ .
ture, flat histogram methodg], focusing on the density of \yhen investigating magnetic materials modeled by classical
states and techniques performing Monte Carlo sampling of;atistical mechanics such as Ed) using Monte Carlo

the high temperature series expansion of the partition funcyethods one has to take into account the effects of the non-
tion [S] using worm algorithm$6]. Two of us recently pro- g autocorrelation time- (defined later that is always
posed a very efficient geometrical worm algoritfim8] for  hrasent in Monte Carlo simulations. The autocorrelation time
the bosonic Hubbard model. In this algorithm variables argyescribes the correlation between observations of an observ-
not updated at random but instead a “worm” is propagate%meo(to) andO(t,+1), t Monte Carlo sweepgMCS) apart.
through the lattice, at each step choosing a new site to Visitpo  qutocorrelation times, depends on the simulation

with a probability proportional to theelative (among the o herature and the system size and grows dramatically
different sites considerggrobability of changing the corre-  ¢jnse to the critical temperatur&,, a phenomenon referred

to as critical slowing down. AtT. the autocorrelation
time displays a power-law dependence of the system size,

H=-JXss, s=%1. (1)
)

*Electronic address: hitchpa@muss.cis.mcmaster.ca 7~L#c, defining a Monte Carlo dynamical exponegjc.
"Electronic address: sorensen@mcmaster.ca For the well known Metropolis algorithm one estimates
URL: http://ingwin.physics.mcmaster.casorensen [9,10] zyc~2.1-2.2. If efficient algorithms, with a very
*Electronic address: alet@phys.ethz.ch small z,,c, cannot be found, this scaling renders the Monte
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Carlo method essentially useless for large lattice sizes since
all data will be correlated. It is therefore crucial to develop
algorithms with a very small or zemm,c. In order to test the
proposed algorithms we shall therefore only consider simu-
lations at the critical point since this is where the critical
slowing down is the most pronounced and whayg is de-
fined.

The geometrical worm algorithrfi7,8] has proven to be
very efficient for the study of the bosonic Hubbard model
when formulated in terms of currents on the links of the
space-time lattice. The estimateg] is very close to zero
[8]. It is therefore natural to generalize this algorithm to clas- P—P
sical models defined in terms of bond variables. This is done
in Sec. Ill, where a very efficient algorithm formulated di-
rectly on thedual lattice is developed. A related dual algo-
rithm was initially described by Prokof'ev and Svistun®. FIG. 1. An example of the configuration of the neighbors for
Our algorithm can be generalized to Potts, clock, and otheslgorithm A,B. The current sites, is indicated by e, the neighbors
discrete lattice models of which the Ising model is the sim-by . The activation(weight) at the current site will depend on the
plest example. The dual algorithm also allows for a veryspins at the nearest neighbor sitsbaded circles

simple and elegant way of calculating the domain wall freet fiio th i at sites f i tion in th f
energy directly. In Sec. lll we outline how this is done. Re-t.0 P e'tf?p—lrllf athSI & from 1ts pos& '?nﬂ'.n e (}on |gH[ra-
gretably, only in two dimensions is it possible to define SUChpl)grs]it’LignWiln Y toi thaet ?r:]irg%(;?gl:ggtE- Ois Ig)e;ﬁgq drcr)er:?a;i\?e

; X I ) i
a.dualf?rl]gorlfhm._t:]n Seﬁ' Illtvr\]/e alsct)) pt:.?.fe?t a}[hdwected Vterto the spin configurationw. In the following we shall
slon o h |saglor| m where ?jplr—|0 apriity grf € Worms 10 |, a1e extensive use of the activation or local weight for
erase themse VES IS minimized. However, belore prese.m'ngverturning a spin,ASEIi. More precisely,AEi denotes the
the dual algorithm it is instructive to consider geometrical . - : o )

. . : . weight for flippings; from its position inu to that inv and
worm algorithms defined on thdirect lattice. Such an algo- - the weiaht for qoina in the ooposite direction. As we
rithm is described in Sec. Il, in both directed and undirecte g going bp )

E. . . .
versions. This algorithm is applicable in any dimension but isShall SeeAg! is not uniquely determined. Here, we shall use

of less interest due to its poor efficiency. However, from anPs =Min[1,exg—-AEi/kgT)] although other choices would
algorithmic perspective this algorithm is interesting in its b€ equally suitable. When the worm is moving through the
own right and it leads naturally to the definition of the duallattice it will move from the current sitg to a set of neigh-
algorithm. Finally, in Sec. IV we conclude with a number of boring sitesr and it becomes necessary to define the normal-
observations concerning the properties of the algorithms. ization NSIZEJASEF&’- This normalization is used for choosing
the next neighbor to visit among the sebf neighbors.
If one considers the proofs for the geometrical worm al-
l. GEOMETRICAL WORM ALGORITHMS gorithms[7,8], it is not difficult to see that a generalization to
ON THE DIRECT LATTICE classical statistical models defined on the direct lattice will

The first algorithm we present we shall refer to as thedepend crucially on the fact that the normalizatNQ does
linear worm algorithm. This algorithm is closely related to not depend on the positiqap or down) of the spin s, at the
the geometrical worm algorithnig,8], however, the worms site itself. For the Ising model, defined in E@), only near-
do not form closed loops, instead they form linear stritgs €st neighbor interactions are taken into account and we can
worm) of flipped spins. A major advantage of this algorithm satisfy this requirement simply by not allowing the worm to
is that we can select the length of the linear worm or even th&ove to any of the four nearest neighbor sites to the current
entire distribution of worm lengths. This could be advanta-site s. In principle, one can consider moving the worm to
geous for the study of frustrated or disordered models wher@ny other sites in the lattice, an aspect of this algorithm of
other cluster algorithms fail due to the fact that too “big” or considerable intest. For the case of longer range interactions

too “small” clusters are being generated, leading to a signifiwe would have to restrict the worm to move only to sites that
cant loss of efficiency. the current spin doesot interact with. Note that, since we

allow sites on the same sublattice to be visited thenAgie

will depend on theorder that we visit the sites since sites

neighborings; could have been visited previously by the
We begin with a number of useful definitions: In order to worm. As an example of a simple choice for the neighbors

define a working algorithm we consider two configurationswe show in Fig. 1 an example where the worm can move to

of the spins,u and v related by the introduction of a worm. four neighbors around the current site, excluding the four

Let w denote the configurations of the spins without thenearest neighbors to the site. When defining the set of neigh-

worm,w, andv the configuration of the spins with the worm. bors o for the worm to move to froms one also has to

Furthermore, lets;...sy be the sitegor sping visited by  satisfy the trivial property that i§, 4 is a neighbor of; then

the worm(of lengthW) and letE; denote the energy required s should also be a neighbor sf, ;.

A. Algorithm A (linear worms)
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We now propose one possible implementation of the geo- psi(m|n) Asto
metrical worm algorithm for the Ising model. A set of suit- = A—m (3
able neighbors t@; is defined as outlined earlier and at the psi(n|m) S+oy

beginning of the construction of the worm wadraw its  |f e havek neighbors this defines lax k matrix P where
length, W from a normalized distribution. We refer to this the diagonal elements correspond to the backtracking prob-
algorithm as linear wormgA). Later we outline the algo- apilities, the probabilities for the worm to erase itself. Previ-

rithm in pseudocode. o . ously, we had effectively been using(m[n)'s which were
(1) Choose a random starting sitg;; and with normal-  jndependent of the incoming direction,, since we simply
ized probability a lengtW. o _ had ps(m|n)=A, /N, corresponding to a matriR with
_ (2)ECa!cuIa'|tEe the probability for flipping the spin on that jgentical columns. However, the earlier condition of balance,
site Ag! with AJ'=min[1, exp~AEs /kgT)]. Eq. (3) leaves sufficient room for choosing very small back-
(3) Flip the selected spirs,. tracking probabilities and in most situations the correspond-

(4) For each of thek neighbors in the set of neigh- ing diagonal elements d® can be chosen to be zero. If we
bors o, calculate the weight for flipping, ASz  impose the constraint that the sum of the diagonal elements
=min[1,ex;:(—AESi+(,/kBT)]. Calculate the normalization of P should be minimal the problem of finding an optimal
N%=EUA§::; and the probabilitieq;);:Agiﬂ,/N%. matrix P can be formulated as a standaro! linear program-

(5) According to the probabilitiespg select a new site Ming problem to which conventional techniques can be ap-

_ : : . plied [8].
?jiiTong the neighbors to go to and increasey one, At a given sites; we choose four neighbors, as indicated

; in Fig. 1 by the open circles. The activation at a given
© i<W go_té) 8 _ ) neighbor will depend on its four nearest neighbors shown as
(7) CalculateA, W andNs after the worm is constructed  {he shaded circles in Fig. 1. Technically, eqrfim|n) now
and with probability Po(w)=1-mir(1,AS!Ns /(A;-"Ns )] depends on the position of all the 16 surrounding spins. and
erase the constructed worm. He' andN,_are calculated hence, there are in principle'2possible matrice® at each
beforethe worm is constructed. * site. It is therefore not feasible to choose too large a set of

(8) Go to 1. neighbors when directing the algorithm. In the absence of
Note that if we decide to construct a worm of length disorder, the ¥ matrices can be tabulated and minimized at

attempting a Metropolis spin-flip at that site. See AppendixMagnetic model at hand it is easy to see that at most 625

A for a proof of the earlier algorithm. differentmatrices occur. _ _ _
We can now use the earlier matricBsfor an algorithm

that performsdirected linear worms of length varying be-
B. Algorithm B (directed linear worms) tween 1 andV. We again assume that a gebf k neighbors

. . .. has been chosen.
It is an obvious advantage to have control over the distri- (1) Choose a random starting sig.; and with normal-
bution of the length of the worms. However, if we choose theized probability a lengthw.

length of_ the worm at the start of the construction of the (2) Calculate the probability for flipping the spin on that
worm as in algorithm A then we allow for the worm to back- siteAEll with Asfi:min[l,exp(—AE IkeT)].
track, thereby erasing itself. We can try to eliminate or rather S
minimize the probability for the worm to do backtracking by _ . .
constructing a directed algorithm. We closely follow the set(4) I (S:ieﬁcflljlat?:nt:]%r ea;ggag”;hekfor:elgl?boi;s mEiEr:e
method outlined in Ref{8] in order to construct a directed ~~ 7 P Y PP g’ASnﬂT
algorithm. See also Refl11] for previous work on directed ‘m'”[l’g_xﬁ_AE%w/kBT)]- .Cg.lculate Ethe normalization
algorithms. Leto,, and o, be among the neighbors, of the ~ Ns=2,As%7 and the probabilitiespg =A¢', ,/Ns. Else: De-
site 5. The earlier proof of algorithm A does not depend pending on the configuration of the nearest neighbors of the
directly on the definition of the probabilitiq:;’m andp;“, but  k neighbors _Select the c_orre_(minimizeo) matrix P and if
only on their ratio, since they have to satisfy the following the worm arrived from directiom, setpg equal to the n'th
relation: column of P.
(5) According to the probabilitiepg select a new sitg,
o to go to and increaseby one,i—i+1.
Ps" _Asra/Ng _ Agea, @ 6) Ifi<Wgoto3.

o' Asra/Ns  Asio, (7) CalculateA;™ andN, after the worm is constructed

and with probability Pe(w)=1—mir{1,A§llel/(A;IfWNsw)]
This leaves us considerable freedom since we can definerase the constructed worm. He!kEll andN, are calculated
conditional probabilities,pq(m|n), corresponding to the peforethe worm is constructed.

(3) Flip the selected spirs,.

probability to continue in the directioa,,, at the sites; if we (8) Goto 1.
are coming fromo,. At a given site we then only need to  The proof of the earlier algorithm can be found in Appen-
satisfy dix B.
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L I I B R The main cause of this poor behavior is the necessity to
include a rejection probabilit.. If a worm on average at-
sy — = L=10 Directed Linear Worms (B) tempts to updatéW) spins, we need on average to_generate
LN .= L=10 Metropolis L2/{W) worms to complete a MCS. As a rough estimate, let
q - \ — L=10 Swendsen-Wang g us consider that the worm is accepted with the average prob-
L ability p and that only a fractiox of the (W) attempted spin
.\ flips result in an updated spi@ spin can be visited several
VN times. It then follows that on averagexL? are actually
Cg® 0.1H Y N - flipped in a MCS with the linear worm algorithm. If the
- A E average probability for flipping a spin with the Metropolis

- L=10 Linear Worms (A)

. algorithm isqg and if all the spins selected in a MCS are
"N different, the corresponding number for the Metropolis algo-
LR rithm is gL?, presumably of the same order pglL? and
\ likely larger. The effect of the directed linear worm algo-
i NN J rithm is to maximizex as much as possible and it therefore
~ 0\ seems unlikely that the linear worm algorithm in its present
| v \ | | form can perform better than the Metropolis algorithm unless
0.01 ;—H-———— A e e 200 p also is maX|m|zed_. o _
£ <Wo/L2 It woy_ld be very interesting if algorithms A and B could
be modified so thap=1 (P,=0). We have so far been un-

FIG. 2. Autocorrelation functions for the energg(t) as a func-  able to do so. Such a modified algorithm would be signifi-
tion of Monte Carlo time, calculated &t. Shown are results for cantly more efficient than the Metropolis algorithut pre-
L=10 for the Metropolis, Swendsen-Wang and for the linear wormsumably less efficient than the Swendsen-Wang algojithm
(A) and directed linear worniB) algorithms(with uniform worm It would be much more versatile and could be of significant
length. Note that in order to compare the four algorithms the timeinterest for frustrated or disordered systems since it would
axis has been scaled so that in all cases one time step correspondsyigt require the construction of clusters but only of the much
an attempted update of all the variables. The autocorrelation funcsimpler worms, the length of which can be chosen.
tions shown were calculated aVeraging over 20 million worms Even though |t |S qu|te |nterest|ng to be able to Choose the

(MCS for the metropolis algorithm distribution of the worm lengths at the outset, the question
arises which distribution of worm lengths will give the most
C. Performance: Algorithms A,B optimal algorithm. In the present work we have chosen a

distribution of worm lengths that is uniform between 1 and
2L, but on general grounds we expect a power-law form for
this distribution to be more optimal at the critical point. For
the study of Bose-Hubbard models using geometrical worm

In order to test the performance of algorithms A and B we
consider the autocorrelation functi@y(t) of an observable
Q. This function is defined in the standard way

(O1)O(0)) = (O)? algorithms it was note{B] that the distribution of the size of
Co(t) = > . (4) the worms follows a power-law with an exponent of approxi-
(O9)-(0) mately 1.37 at the critical point. Hence, in the present case it

would appear likely that an optimal power-law distribution
i . h its for th of the worm lengths at, can be found, defining a “dynami-
million worms. In Fig. 2 we show results for the autocorre- ., exponent. The idea of choosing the distribution of the

lation function for the energfe(t) for the linear worm al- 51 size to optimize the algorithm resembles previous
gorithms A,B for a system of size=10. In both cases the K by Barkema and Newmai2,13.

worm lengthW was chosen from a uniform distribution. This |, closing this section, we note that it is quite straightfor-

is compared toCg(t) for the usual single flip Metropolis \arq 1o define an algorithm on the direct lattice where the
algorithm and the Swendsen-Wang algorithm. For the latte{yorms form closed loopgrings). In this case the length of
two algorithms the Monte Carlo time is usually measured inhe \worm is determined by the size of the loop. We have
terms of MCS where an attempt to updatetheL” spins in  tested such algorithms but their performance is even worse
the lattice has been made. However, for algorithms A and Bhan algorithms A and B since the constraint that the initial
a worm will on average only attempt to upddW)) of theL®  spin has to be revisited makes the length of the worms in

spins. Hence, if time is measured in terms of generatedome cases diverge, or for other variants of such an algo-
worms for the worm algorithms it should be rescaled by &sthm, go to zero.

factor of (W)/L? for a fair comparison to be made with al-
gorithms where Monte Carlo time is measured in MCS. This
has been done in Fig. 2. From the results in Fig. 2 it is clear
that the efficiency of algorithm A and B is fairly poor and It is clear that one problem with both of the earlier algo-
worse than the much simpler Metropolis algorithm. We haverithms is the fact that the spin on the initial site is treated
checked that this remains true for significantly larger latticedifferently than the remaining spins. This is because the geo-
sizes. metrical worm algorithms are more suitable for an imple-

For a reliable estimate of,(t) we typically generate 20

IlI. DUAL ALGORITHM
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FIG. 3. A worm moving through the dual lattice. The direct
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L

> b¥(j,k) - L(mod 4=00]. 9)
k=1

These constraints are not independent of the previously de-
fined constraints Eq.7). In fact, it is easy to see that if the
boundary constraints E@9) are applied at just one row and
one column then the divergence free constraints(Eqwill
enforce the boundary constraints at the remaining rows and
columns. Hence, these constraints only give us 2 more inde-
pendent constraints, in tota?+1 constraints. The model,
written in terms of the bond variables, therefore ha3s 1
free variables and correspondingly half the number of de-
grees of freedom compared to the formulation in terms of the
spin variables. This is a natural consequence of the fact that
the bond-variable model does not distinguish between a state
and the same state with all the spins reversed.

The partition function for the Ising model onLax L torus
can now be written in the following manner:

L L
Z=Tr,Try [T TT explK} 0.k + Ko%K} (10)

lattice is indicated by solid lines and the spins on the direct lattice j=1k=1

by solid circles. The dual lattice is indicated by dashed lines and th
sites on the dual lattice by open circles. As the worm moves throug
the lattice the bond variables are flipped as indicated by the thic
bonds in the figure.

mentation directly on the dual model. Hence, we will now

E—Iere Tr denotes the trace over bond variables satisfying the
garlier constraints ankl}’, =35, /kgT, KY, =3, /KgT.

A. Algorithm C (dual worm algorithm)
We now turn to a discussion of the dual algorithm. From

try to describe an algorithm that moves a worm along thehe earlier description in terms of bond variables it is now
dual lattice by updating bond variables on the direct latticequite easy to define a geometrical worm algorithm on the

See Fig. 3.

dual lattice closely following previous work on such algo-

We begin with some definitions analogous to the treatfithms[7,8]. We denote théth site on the dual lattice that the

ment of Kadanoff[14]. On the direct lattice we define, at
each site(j, k) an integer variable; = +1. Herej describes
the index in thex direction andk the index in they direction.
Then we can define the following bond variables:

b*(j,K) = Sj41xS) ks 5

BY(j,K) = S k+1Sj k- (6)

The Ising model has? variables where as we see that we

worm visits asd,. A worm is constructed by going through a
sequence of neighboring sites on the dual lattice by each
time choosing a direction to follow according to an appro-
priately determined probability. When the worm moves from
d; to d;,4 the corresponding bond-variabie that the worm
crosses is flipped. The bond variables can take on only 2
values 1. Hence, the associated energy cost for flippjing
given by AE=2J{b%j,k), a=x,y. We can now define
weights for each directionr, AFs=min[1,exg—AE’/kgT)]
used for determining the correct probability for choosing a

have 2.2 bond variables. However, it is easy to see that thenew site. This is not the only choice for the weights. Other
bond variables satisfy a divergence free constraint at eachquivalent choices should work equally well. The bond vari-

site of the dual lattice
b*(j,k) + bY(j + 1,k) = b*(j,k+ 1) = b¥(j,k)(mod 4 =0
(7)

giving usL? constraints. However, if we define the model on

ables are updated during the construction of the worm and
the worm is finished when the starting site on the dual site is
reached again and the worm forms a closed loop. The dual
worm algorithm can then be summarized using the following
pseudocode.

(1) Choose a random initial sit¢; on the dual lattice.

a torus the constraint on each dual lattice site is equal to the (2) For each of the directions=+x, +y calculate the
sum over the constraints on all the other dual sites. Hence, iweights A¥- associated with flipping the bond variable per-

this case we obtain onl?-1 independent constraints. In

pendicular to that directiorAfe=min[1,exgd—-AE’/kgT)].

addition we also have to satisfy the boundary conditions, (3) Calculate the normalizatioNdi=2,,AE(r and the asso-

SL+1k=S1k SjL+1=Sj1- This implies that for aiL X L lattice
with even L

L

> bX(j,k) - L(mod 4 =00k, (8)
=1

ciated probabilitiepg =A%7/Ny.
(4) According to the probabilitiespgi, choose a direction

g.
(5) Update the bond-variable for the direction chosen
and move the worm to the new dual lattice gite;.
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lattice (not necessarily a simply connected clugsté&fipping
the bond variables in the worm effectively flips the spin in
the cluster. This correspondence is particular to two dimen-
sions which is the only dimension where the present dual
worm algorithm can be defined. The intuitive argument for
this is that the bond variables updated by the worm have to
enclose a finite volume of spins on the direct lattice; this is
only possible in two dimensions. In dimensions higher than 2
the one-dimensional worms are not capable of enclosing a
finite volume. Mathematically, it can be seen that the diver-
genceless constraint, E(), cannot be satisfied under worm
moves. Under most conditions the rejection probabilRy,
is very small, however, for small lattice sizes the probability
for generating a worm with aadd winding number in either
the x or y direction can be non-negligible. It is important to
note that since the bond variables are updated during the
. construction of the worm the generated configurations are

My not valid and the earlier constraints awet satisfied. How-

' ever, once the construction of the worm is finished and the
_? I ? path of the worm closed, the divergenceless constraint is
: satisfied. Rejecting worms with odd winding numbers then

FIG. 4. An |||ega| worm move. The worm winds around the assures that the I‘eSU|tIng COﬂfIgUI’atIOHS are Va“d AISO, Wheﬂ
lattice in the vertical direction and correspondinglyrows have an  the worm moves through the lattice it may pass many times
odd number of flipped bond variablés The direct lattice is indi- ~ through the same link and cross itself before it reaches the
cated by solid lines and the spins on the direct lattice by solidnitial site where the construction terminates. Finally, at each
circles. The dual lattice is indicated by dashed lines and the sites ostepi in the construction of the worm it is likely that the
the dual lattice by open circles. As the worm moves through thewvorm at the sited; will partially “erase” itself by choosing to
lattice the bond variables are flipped as indicated by the thick bondgo back to the sitel;,_; visited immediately before, thereby
in the figure. “bouncing” off the sited;.

(6) If d;#d; go to 2. Proof of algorithm C (dual worm algorithm)

(7) Calculate the normalization‘gdl andel of the initial Now we turn to the proof of detailed balance for the al-

site, s;, with and without the worm present. If the worm is gqrithm, As before, letw denote the configuration of the
‘legal,” i.e., with evenwinding number in both th& and the 5 variables without the wormw, and» the configuration
y direction(Qj, O}, both 0—see definition latgrthen erase \yith the worm. Let us consider the case where the wamm,
the worm with probability Pe=1-min(1,Ng /Ny ). If the  visits the sites{d,...dy} on the dual lattice. Herd, is the
worm is “illegal,” that is if eitherO}, or O}, calculated when initial site. The worm then goes through the corresponding
the worm has closed equal 1, then always erase it. Go to lbond variablegb;...by}. Note thatdy, is the last site visited
Following the earlier discussion of the boundary con-before the worm reachesy. Furthermore, leE; denote the
straints it is easy to determine if the winding number inxthe energy required to flip the bond-varialdefrom its position
ory direction is odd by simply choosing one rdgand one in the configuratioru, with —E; the energy required to flip;
column j, and calculating the number of frustratdek -1,  from its position inv to that in u. The total probability for

bond variables constructing the wormv is then given by
1-b%(j, ko) N AR
0= 2 = (mod 2, P(w;d; — dy) = P(dy)[1 ~ Pew)IP(legalw) [T 1~
j i=1 Ng
12
y=3 1-b(jo,k) (12
o= - 5 (mod 2, (1) The indexo denotes the direction needed to go fraimto

di;1, (£X,1y), crossing the bond-variable;. P(d;) is the
since a worm with an odd winding number in thelirection ~ probability for choosing sited; as the starting point and
will result in O* being 1 independent d, or equivalently —Pc(w) is the probability for erasing a legal worm after con-
for thex direction andDY. See Fig. 40* andO then take on  struction. Finally,P(legallw) is the conditional probability
the values 1 or O depending on whether the correspondinthat the constructed wornw is legal, with evenwinding
winding numbers are odd or even. numbers in bothx andy directions. If the wormw is legal

Several points are noteworthy about this algorithm. To aand has been accepted we have to consider the probability
great extent it is simply the dual version of the Wolff algo- for reversing the move. That is, we consider the probability
rithm [2]. Each worm encloses a cluster of spins on the direcfor constructing an anti-wormv annihilating the wormw.
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A Hence, with this choice oP, we satisfy detailed balance
since
‘\bl_l B
O]t 0= = expl= AEro/ksT). (16)
% N P
bo~ ' As was the case for the previous algorithms there are two

ways of introducing a worm that will take us from— v,

/dw-z and equivalently two ways of introducingv. (Strictly
%\)\ ?--——» speaking, each of the two ways actually represents an in-
& A finite sum as discussed under the proof of algorithmIA.
b1 ~ ' bw-2 both cases Eq(16) holds and it follows thatP(u— v)
- N ! =P(v— u)exp(—AE+./kgT) showing that detailed balance is
bw bw—1 satisfied. Ergodicity is simply proven as the worm can per-
k- === ->2§)-- --r- -25} form local loops and wind around the lattice in any direction.
dy” q 51 a3 Ew ‘)52 & \dw_l Illegal worms One should be cautious when treating

illegal moves such as the worms with odd winding num-
bers encountered earlier. Suppose that our Monte Carlo
algorithm has generated a number of configurations
FIG. 5. The notation used for the proof of the dual worm algo- C1,C>,C5,Cs, ...,Ci_1,C; where some configurations are
rithm. The configuration shown corresponds to a wgsolid line) ~ repeated since the worm moved has been rejected. From
partly erased by its corresponding antiwofdashed ling the configurationC; we now construct a worm that turns
out to be illegal with odd winding numbers. From the earlier
Note that, in this case the sites are visited in the opposit@rC0f we then see that weaveto repealC; in the sequence
- - - - of configurations sincenot repeating the configuration
would lead to a total acceptance probability different from
= i = S[1—Pe(w)]P(Iegalw). For instance, imagine we kept gener-
ited in the reverse ordeb;=by,b,=by-1,....bw=bs, In  ating worms till we found a legal one. This would make the
generalb;=dy..;. Consequently, when describimg we di-  total acceptance ratio a sum over the number of times we try

rectly used, b instead ofd,b. The notation is illustrated in Which would be incorrect.
Fig. 5. We therefore have

order, d;=d;,d,=dy, ...,dw=d,, in general di=dyi.»
(i#1). In the same manner the bond variables are also vi

B. Algorithm D (dual directed worm algorithm)

PW;d; — dy) = P(dp)[1 - Pe(W)P(legalw) Following the discussion of algorithm B it is straightfor-
5 ward to develop a directed version of algprlthm C. A; was
ABw = AEia the case for algorithm B we define conditional probabilities
X N W N (13 pdi(m|n), corresponding to the probability for continuing in
d = N the directiono,, if the worm has come from directiomn,,.

Since we in algorithm C, at each site on the dual lattge
can go in four directions this leads us to define>a4tmatrix
P at each site on the dual lattice. However, compared to
5. Since we are updating the link variables during the Con_a_lgo_rithm B, the number of_different ma_trice's ata given dual

. . . = site is now much smaller since the weighs only depend
struction of the worm we immediately see thaf =Ny for 4, the associated bond variable. In fact there are now only 16
i #1. Furthermore A% and A5 only depend on the bond- possible matrices at a given site and these can easily be op-

Please note that the indéxuns overW, ...,2. Let us now
consider the case where both of the wormsand w have
reached the sitd, differentfrom the starting sitel,. See Fig.

variableb;, and we therefore see that timized and tabulated at the outset of the calculation. Even in
AE the presence of disorder, a large number of them can be
— =exp—- AE/kgT), i=1...W. (14) tabulated. This directed dual worm algorithm is now identi-
AT cal to algorithm C except for the fact thatdf is different

from d,, the pgi are selected from these optimized matrices
(the same way as it was done for algorithm Bue to the
simplicity of this modification and the similarity with algo-
rithm B, we do not present pseudocode nor a proof for
— this directed algorithm. It is easy to see that rejection prob-
Pw) _ 1 -Pg(w) Na ability remains identical to the one used in algorithm C,

Hence, sinceP(d,) is uniform throughout the dual lattice,
and sincav andw must wind the lattice in precisely the same
manner resulting irP(legallw)=P(legalw), we find

= — exp(— AE1,/kgT), (15) =
P(w) 1 -Pgw)Ng, P ABrofks Pe(w)=1-min(1,Ng /Ng).
whereAEq; is the total energy difference between a configu- C. Performance algorithm C,D
ration with and without the wormv present. With our defi- In order to compare the two algorithms C and D defined

nition of P, we see that[l—Pe(W)]/[l—Pe(M]:Ndllﬁdl. on the dual lattice we have again calculated the autocorrela-
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S IV S L compare to the Metropolis algorithm where each time step
on TR corresponds to an attempted update of tRespins. Since
the worm algorithm in this case on average only attempts
to update(W) out of the 2.2 bond variables we have to
rescale the time axis by a factor )/ (2L?) when we com-
pare algorithms C and D to the Metropolis algorithm. We can
therefore define an autocorrelation timén units of worms
constructed and a rescaled autocorrelation time

0.1

L2l 01 111

C® A . — 1(|)0 X =®W)/(2L?) in units of 2.2 attempted updates. In order to
[ AN L simplify the analysis of the data we define the autocorrela-

Y N tion time asCg(7)=0.05. As can be seen in Fig. 6, the
0.01 i \ N E dual worm algorithms represent a dramatic improvement
LA - L:iggle;c&olis ] over the Metropolis algorithm. We have not plotted results
H TTr T udl Worms § for the Swendsen-Wang algorithm on the direct lattice since
vl - t:;gﬁ‘;ﬂ(ff,';ﬁ‘;“’dw"“m 1 for L=10 they are indistinguishable from the results obtained

i ! - =+ L=20 Dual Worms 1 for the dual directed worm algorithm. The scalingzofwith
o001 ) | , == L=20Dual Directed Worms| L is a relatively small power-law’ ~ L%4€, This exponent is

) 50 100 150 200 small butlarger than most values quoted for the Swendsen-

t<W>/2 L% Wang and Wolff algorithms. This is perhaps not too surpris-
_ _ ing since the worms are allowed to cross themselves thereby
FIG. 6. Autocorrelation functions for the ener@y(t) as afunc-  erasing previous updates. The difference in autocorrelation
tion of Monte Carlo time, calculated a. Shown are results for times between algorithm C and its directed version D ap-
L=10,20 for the Metropolis, dual worm and dual directed worm nears to be a constant factor. Therefore, the direction of al-
algorithms. Note that, in order to compare the three algorithms th orithm C does not change the exponet.

time axis has been scaled so that in all cases one time step corre- For a 10x 10 lattice atT, roughly 85% of all constructed
. . Cc

sponds to an attempted update of all the variables. The inset show§y o 416 accepted and about 10% of the constructed

the scaling of the autocorrelation timéas a function of the system

. . . worms are illegal when simulations are performed using the
size for the dual worm and dual directed worm algorithm. Thed | tri lqorithm. Eor the directed . f
autocorrelation time is here rescaletd= {W)/(2L?). In both cases ua geome fic worm algori .m. or the directe Over5|on %
we find roughly a power-law form’ =L%46 shown as the solid the algorithm the_: corresponding number_s are _75/o and 20%.
lines in the inset. The autocorrelation functions shown were calcu:rhe number of illegal worms drops rapidly withand for

lated averaging over 10—20 million worrCS for the metropolis L=30, 90% of thg worms are accepted with 5% illegal
algorithm. worms for the undirected algorithm compared to 83% and

10% for the directed dual algorithm.

tion functionCg(t). Our results are shown in Fig. 6 and tabu- The preseqted dual glgonthms are quite general since they
depend only in a relatively limited way on the underlying

lated in Table I. As on the direct lattice we use the energy tq-|amiltonian. Even though they may not be competitive with

calculate the autocorrelation functions. For aIgorithmsCan(ghe Swendsen-Wang and Wolff algorithms for the Ising

D we have constructed 10 million worms for the smallermodel thev mav be aquite interesting to apolyv to other two-
lattices and 20 million for the largest latlide =160. We  ode tN€Y may be g g to apply
dimensional models that can be formulated in terms of bond

TABLE |. Average worm size defined as the average number O?/._’:lr_lables and_ where more effective cluster algorithms are
difficult to define.

bond variables attempted to change during the construction of any
worm, including worms eventually rejected. Also listed is the esti-
mated autocorrelation time, in units of worms constructed and the D. Domain wall free energy

rescaled autocorrelation time ==W)/(2L?) in units of 12 at- . . . . . )
tempted updates. The autocorrelation time is here defined b}/n A quantity of particular interest in many studies of order

Ce(7)=0.05. Results are listed for the dual and dual directed worm g transitions is the domain vyall f“r‘e energy, the dlﬁeren.ce
in free energy between configurations of the system with

algorithms. periodic (P) and antiperiodiq/AP) boundary conditions in
Dual Dual directed one direction,AF=FAp—Ep. The dc_)main wgll free energy

can be shown to obey simple scaling relations and is a very
L (W) T 7 (W) T 7 efficient tool for distinguishing between different ordered

phases. Unfortunately, it is usually very difficult to calculate
10 57 646 184 60 29.3 88  free energies directly in Monte Carlo simulations. A clever
20 188 1094 257 198 49.3 12.2  trick to do so is the boundary flip MC method, proposed by
30 382 1494 317 400 66.6 14.8 Hasenbuschi 15,16, where the coupling constants at the
40 630 187.9 37.0 660 81.9 16.9 boundary are considered as dynamical variables, and can be
80 2119  303.8 50.3 2204 1359 234 flipped during the course of the MC simulation. P(T)

160 7132 478.8 66.7 7408 214.3 310 andPAP(T) describe the probability to obtain MC configu-
rations with periodic and antiperiodic boundary conditions
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TABLE Il. The domain wall free-energF/KT for several sys-  proposed kind on the dual lattice in two spatial dimensions.

tem sizes calculated at the critical temperatligeobtained using Due to its poor performance the linear worm algorithm

our MC method and exact results from REE7]. (A) is mainly of interest from the perspective of fostering the
development of more advanced algorithms. The linear worm

L Exact MC algorithm presents a number of very attractive features such

as the possibility to choose the distribution of the worm

4 0.9658246670 0.96%8) lengths and it seems possible to significantly improve the
16 0.9853282229 0.9850) performance of the algorithniand most other geometrical
24 0.9859725679 0.98%0) worm algorithms by eliminating the rejection probability. So
32 0.9861972559 0.9880) far, we have been unable to do so, but this would clearly be
48 0.9863574947 0.9880) very interesting since the algorithms then would be quite
64 0.9864135295 0.9820) promising for the study of frustrated or even disordered mod-

els where other cluster algorithms fail.
The dual worm algorithm is very efficient and even

and Zp, Z,p the associated partition functions, then the do-though the obtainedyc is larger than for the Swendsen-

main wall free-energy is given by Wang algorithm it is quite competitive since it requires rela-
tively little overhead and is very simple to implement. One
e BFap~Fp) = Zap - Pap(T) (17) of the most interesting features of this algorithm is the topo-
Ze Pp(T)’ logical aspect of the worms, resulting in forbidden worm
moves.

Effectively, the boundary flip MC method attempts to sample
the ratioZ,p/Zp, and this is usually cumbersome. However
for the dual algorithms it is trivial to obtain this ratio. It
follows from Eq.(9), that if we allow the constructed worms
to have all different kinds of winding around the torusak-
ing all worms legal then we are sampling a partition func-
tion which is a sum of four terms

The geometrical worm algorithm has in some cases been
'very successfully applied to the study of models with disor-
der[7]. We therefore applied both the linear and dual worm
algorithm to the bond disordered Ising model. In both cases
do the algorithms perform worse than the Metropolis algo-
rithm. For the dual worm algorithm this failure is due to the
fact that the average size of worms diverge when glassy
Z=Zp p +Znp p +Zp ap +Znp ap - (18) phases are approached. The linear worm algorithm would
xy Xy oy oy seem more promising for study of models with disorder since
Here,Zgc is the partition function with B@EBC,) in the  the length of the worms can be controlled from the outset. In
x(y) direction. This is so, because we can turn an illegalfact the performance of the algorithm is in this case quite
worm into a legal worm by changing the boundary conditioncomparable to the Metropolis algorithfwhich has a diverg-
in the directiotis) where the winding of the worm violates ing 7 close to a glassy phaséne might have expected the
Eq. (9). During the MC simulation it is easy to see to which linear worm algorithm to perform significantlgetter than
term a given configuration contributes simply by keepingthe Metropolis algorithm when disorder is present. We as-
track of thetotal winding number in both the& andy direc-  sume that the fact that it is only comparable to the Metropo-
tion. See Eq(11). When this is even, the boundary condition lis algorithm is because large parts of the spins are not effec-
in the associated direction is periodic, and if it is odd thetively flipped since worms are mostly rejected in those parts
boundary condition is antiperiodic. In order to calculateof the lattice. If this is true, a modified version of the linear
Zpp, p,/Zp, p, We therefore simply have to count how many worm algorithm withP,=0 or with a much more ingenious
times thetotal winding number is odd in the direction and ~ choice of the neighbors would be of considerable interest
even in they direction and divide with the number of times it Since it would hold the potential to sample such disordered
is even in both directions. Due to its simplicity, we expectmodels significantly more effectively than the Metropolis al-
this approach to be an extremely efficient way of calculatingdorithm.
AF. In Table Il we show preliminary results faxF/kT cal-

culated with 16 worms for the two-dimensional Ising mod_el ACKNOWLEDGMENTS
at T.. For reference we compare to exact results obtained
using pfaffiang17]. This research is supported by NSERC of Canada as well

as SHARCNET. P.H. gratefully acknowledges SHARCNET

for a summer scholarship. F.A. acknowledges support from

the Swiss National Science Foundation and stimulating dis-
We have presented two generalizations of the geometricalussions with Philippe de Forcrand. The authors are grateful

worm algorithm applicable to classical statistical mechanicgo Philippe de Forcrand for suggesting the earlier way of

model. The first algorithm exploits linear worms on the di- calculatingAF.

rect lattice, the other closed loops of worms on the dual

lattice. In_ both cases we have deve_lopec_;l dlrec'ged versions of APPENDIX A: PROOF OF ALGORITHM A

the algorithms. While the first algorithm is applicable in any

spatial dimension, it is quite clear that for topological rea- The probability for creating the wornw, starting from

sons it is only possible to define a worm algorithm of thesites; is given by

IV. DISCUSSION
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AEzz E3 ASE\X/V APPENDIX B: PROOF OF ALGORITHM B
P(wis; — sw) = PW)P(s) =1~ = (1~ PeWl. The proof is quite similar to the proof of algorithm A and
1% SW-1 we use the same notation. The probability for creating a
(A1) worm, w, starting from sites,; is then given by

Ey

Here P(W) denotes the probability for choosing a worm ] _ N,
length of W. The probability for introducing an antiworra, P(w;s; — sw) = P(W)P(s) N, Ps,(Sals) -+ Py, ,

starting at the sites;, erasing the worm by going in the op-

posite direction alongv becomes X (sw-1/Sw-3)Ps,,_,(SMSw-2)[ 1 = Pe(W)].
A;;W‘l A;ZEZ AE (B1)
P(W;sw— sp) = PW)P(sp)— - = —=-[1-P{W)].  HereP(s,;) denotes the probability for choosing siteas the
Ns,, Ns, Ns, starting site for the wormP(W) the probability for choosing

(A2) a worm lengthw. pg(3+l|s-l) denotes the conditional prob-
- ability, extracted from the minimized matriR, at the sites;
Since neitheiNs nor Ny depend on the position of the spin for continuing to the site;,, knowing that the worm is com-

on the sitei and since the spins are visited in the preciseNd from the sites_;. Starting from the configuration we

opposite order for the antiworm with respect to the worm, wetan now calculate trr]‘e probability forhintroducin\?v ap 3”“'
then see thaIN%:N% Oi#1 W, and we find worm,w, starting at the sitg,, erasing the wormy. We fin

=
Aswt ' —

E Ew N P(w: =P(W)P — - ... Ps
PW;ss — S) _ 1 Pli) ACE L ABY N o) (W; sy — 1) = P(W)P(sy) N, Ps,,_,(Sw-2lsw) - - Ps,
PWi;sy—S) 1-Pow) A1 AN _ _
AR X (S5/59)Ps,(S1/Sa)[ 1 = Pe(W)]. (B2)
i Ei/pEi= -AE i initi
SII’]CGAS‘ /Asi =exp(-AE;/kgT) we see, using our definition At a given site,s;, the configurations of the spins during
of P, that the construction of the worm and the antiworm only differ by
_ the position of the spin at the site itself. Since the set of
M = exp(— AE/KgT). (A4) neighborso exclude any nearest neighborssave see that
Pw;sy— s1) P, =Ps. Hence, by construction
Quite generally, there is more than one way to introduce a psi(S+1|S—1) A§i+l
worm to go fromu to ». In fact there are two ways of = = _é;il' (B3)
introducing a worm taking the system from configuratjon psi(s_ﬂs"'l) =

to v, one where the worm traverses the sites frgnto s
and another where the worm traverses the sites ggto s;.
Equivalently, there are two ways of introducing the anti-
worm. Hence,P(u— v) is a sum of the two probabilities, P(W;s; — Sy) ASEllAE\AV;/

Using the definition ofP, and the fact thaP(s;) =P(s), we
then see that

P(u— v)=P(W;s;—sy) +P(W;sy—s;). However, employ- — =— - (B4)
ing the result we have just proven we see that PW:sw— s1) Asl A
_ _ Since ASi/AFi=exp(—AE;/kgT) we finally see that
P(u — v) =[P(W;Sy— S;) + P(W;S; — Sp) | A% ASI o 1°he y
P(w;s; —
X exp(— AE/kgT) PWiSL = Sw) _ o AENGT), (B5)

P(W;sy— Sp)

where AE is thetotal energy cost in going from configura-
Hence, the proposed algorithm satisfies detailed balance ont@n u to configurationy. As was the case for algorithm A,
bipartite lattice and we see that detailed balance is satisfiethere are two ways of introducing a worm taking the system
no matter how many possible ways one can introduce &om configurationu to » (modulo sites visited an even num-
worm in order to go frompw— v as long as the number of ber of timeg, one where the worm traverses the sites frigm
possible antiworms matches. Strictly speaking, since théo sy, and another where the worm traverses the sites ggm
worm can partly erase itself, theigin fact an infinite num-  to s;. Equivalently, there are two ways of introducing the
ber of worm-moves that will take us from to v, however, antiworm. We again see that detailed balance is satisfied.
in each case there is a matching antiworm so we can repladergodicity is proven by noting that single spin flips are in-
the earlier sum over two probabilities with an infinite sum, corporated in the algorithm, since faW=1 the algorithm
yielding the same conclusion. Ergodicity is proven by notingcorresponds to attempting a Metropolis spin flip at the se-
that single spin flips are incorporated in the algorithm. lected site.

=P(v— p)exp(— AE/KgT). (AS)
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